By Mason Medeiros, MJLST Staffer
3D printing has the potential to change the medical field. As improvements are made to 3D printing systems and new uses are allocated, medical device manufacturers are using them to improve products and better provide for consumers. This is commonly seen through consumer use of 3D-printed prosthetic limbs and orthopedic implants. Many researchers are also using 3D printing technology to generate organs for transplant surgeries. By utilizing the technology, manufacturers can lower costs while making products tailored to the needs of the consumer. This concept can also be applied to the creation of drugs. By utilizing 3D printing, drug manufacturers and hospitals can generate medication that is tailored to the individual metabolic needs of the consumer, making the medicine safer and more effective. This potential, however, is limited by FDA regulations.
3D-printed drugs have the potential to make pill and tablet-based drugs safer and more effective for consumers. Currently, when a person picks up their prescription the drug comes in a set dose (for example, Tylenol tablets commonly come in doses of 325 or 500 mg per tablet). Because the pills come in these doses, it limits the amount that can be taken to multiples of these numbers. While this will create a safe and effective response in most people, what if your drug metabolism requires a different dose to create maximum effectiveness?
Drug metabolism is the process where drugs are chemically transformed into a substance that is easier to excrete from the body. This process primarily happens in the kidney and is influenced by various factors such as genetics, age, concurrent medications, and certain health conditions. The rate of drug metabolism can have a major impact on the safety and efficacy of drugs. If drugs are metabolized too slowly it can increase the risk of side effects, but if they are metabolized too quickly the drug will not be as effective. 3D printing the drugs can help minimize these problems by printing drugs with doses that match an individual’s metabolic needs, or by printing drugs in structures that affect the speed that the tablet dissolves. These individualized tablets could be printed at the pharmacy and provided straight to the consumer. However, doing so will force pharmacies and drug companies to deal with additional regulatory hurdles.
Pharmacies that 3D print drugs will be forced to comply with Current Good Manufacturing Procedures (CGMPs) as determined by the FDA. See 21 C.F.R. § 211 (2020). CGMPs are designed to ensure that drugs are manufactured safely to protect the health of consumers. Each pharmacy will need to ensure that the printers’ design conforms to the CGMPs, periodically test samples of the drugs for safety and efficacy, and conform to various other regulations. 21 C.F.R. § 211.65, 211.110 (2020). These additional safety precautions will place a larger strain on pharmacies and potentially harm the other services that they provide.
Additionally, the original drug developers will be financially burdened. When pharmacies 3D print the medication, they will become a new manufacturing location. Additionally, utilizing 3D printing technology will lead to a change in the manufacturing process. These changes will require the original drug developer to update their New Drug Application (NDA) that declared the product as safe and effective for use. Updating the NDA will be a costly process that will further be complicated by the vast number of new manufacturing locations that will be present. Because each pharmacy that decides to 3D print the medicine on-site will be a manufacturer, and because it is unlikely that all pharmacies will adopt 3D printing at the same time, drug developers will constantly need to update their NDA to ensure compliance with FDA regulations. Although these regulatory hurdles seem daunting, the FDA can take steps to mitigate the work needed by the pharmacies and manufacturers.
The FDA should implement a regulatory exception for pharmacies that 3D print drugs. The exemption should allow pharmacies to avoid some CGMPs for manufacturing and allow pharmacies to proceed without being registered as a manufacturer for each drug they are printing. One possibility is to categorize 3D-printed drugs as a type of compounded drug. This will allow pharmacies that 3D print drugs to act under section 503A of the Food Drug & Cosmetic Act. Under this section, the pharmacies would not need to comply with CGMPs or premarket approval requirements. The pharmacies, however, will need to comply with the section 503A requirements such as having the printing be performed by a licensed pharmacist in a state-licensed pharmacy or by a licensed physician, limiting the interstate distribution of the drugs to 5%, only printing from bulk drugs manufactured by FDA licensed establishments and only printing drugs “based on the receipt of a valid prescription for an individualized patient”. Although this solution limits the situations where 3D prints drugs can be made, it will allow the pharmacies to avoid the additional time and cost that would otherwise be required while helping ensure the safety of the drugs.
This solution would be beneficial for the pharmacies wishing to 3D print drugs, but it comes with some drawbacks. One of the main drawbacks is that there is no adverse event reporting requirement under section 503A. This will likely make it harder to hold pharmacies accountable for dangerous mistakes. Another issue is that pharmacies registered as an outsourcing facility under section 503B of the FD&C Act will not be able to avoid conforming to CGMPs unless they withdraw their registration. This issue, however, could be solved by an additional exemption from CGMPs for 3D-printed drugs. Even with these drawbacks, including 3D-printed drugs under the definition of compounded drugs proposes a relatively simple way to ease the burden on pharmacies that wish to utilize this new technology.
3D printing drugs has the opportunity to change the medical drug industry. The 3D-printed drugs can be specialized for the individual needs of the patient, making them safer and more effective for each person. For this to occur, however, the FDA needs to create an exemption for these pharmacies by including 3D-printed drugs under the definition of compounded drugs.