Emily Kennedy, MJLST Staffer
Movies like Jaws, Deep Blue Sea, and The Meg demonstrate that fear of sharks is commonplace. In reality, shark attacks are rare, and such incidents have even decreased during the COVID-19 pandemic with fewer people enjoying the surf and sand. Despite their bad, Hollywood-driven reputation sharks play a vital role in the ocean ecosystem. Sharks are apex predators and regulate the ocean ecosystem by balancing the numbers and species of fish lower in the food chain. There are over 500 species of sharks in the world’s oceans and 143 of those species are threatened, meaning that they are listed as critically endangered, endangered, or vulnerable. Sharks are particularly vulnerable because they grow slowly, mature later than other species, and have relatively few offspring. Shark populations are already threatened by ocean fishing practices, climate change, ocean pollution, and the harvesting of sharks for their fins. Sharks now face a new human-imposed threat: COVID-19.
While sharks cannot contract the COVID-19 virus, the oil in their livers, known as squalene, is used in the manufacture of vaccines, including COVID-19 vaccines currently being developed. Shark squalene is harvested via a process known as “livering,” in which sharks are killed for their livers and thrown back into the ocean to die after having their livers removed. The shark squalene is used in adjuvants, ingredients in vaccines that prompt a stronger immune response, and has been used in U.S. flu vaccines since 2016. Approximately 3 million sharks are killed every year to supply squalene for vaccines and cosmetic products, and this number will only increase if a COVID-19 vaccine that uses shark squalene gains widespread use. One non-profit estimates that the demand for COVID-19 vaccines could result in the harvest of over half a million sharks.
Sharks, like many other marine species, are uniquely unprotected by the law. It is easier to protect stationary land animals using the laws of the countries in which their habitats are located. However, ocean habitats largely ungoverned by the laws of any one country. Further, migratory marine species such as sharks may travel through the waters of multiple countries. This makes it difficult to enact and enforce laws that adequately protect sharks. In the United States, the Lacey Act, the Endangered Species Act, and the Magnuson-Stevens Fishery Conservation and Management Act govern shark importation and harvesting practices. One area of shark conservation that has gotten attention in recent years is the removal of shark fins for foods that are considered delicacies in some countries. The Shark Conservation Act was passed in the United States in response to the crisis caused by shark finning practices, in addition to the laws that several states had in place banning the practice. The harvest of shark squalene has not garnered as much attention as of yet, and there are no United States laws enacted to specifically address livering.
Internationally, the Convention on the Conservation of Migratory Species of Wild Animals (CMS) and the International Plan of Action for the Conservation and Management of Sharks (IPOA) are voluntary, nonbinding programs. Many of the primary shark harvesting nations have not signed onto CMS. The Convention on International Trade in Endangered Species of Wild Flora and Fauna (CITES) is binding, but there are loopholes and only 13 shark species are listed. In addition to these international programs, some countries have voluntarily created shark sanctuaries.
Nations that have refused to agree to voluntary conservation efforts, that circumvent existing international regulations, and lack sanctuaries leave fragile shark species unprotected and under threat. The squalene harvesting industry in particular lacks transparency and adequate regulations, and reports indicate that protected and endangered shark species end up as collateral damage in the harvesting process. A wide array of regional and international interventions may be necessary to provide sharks with the conservation protections they so desperately need.
Research and development of medical cures and treatments for humans often comes with animal casualties, but research to development of the COVID-19 vaccine can be conducted in a way that minimizes those casualties. There is already some financial support for non-animal research approaches and squalene can also be derived and synthesized from non-animal sources. Shark Allies, the conservation group that created a Change.org petition that now has over 70,000 signatures, suggests that non-shark sources of squalene be used in the vaccine instead, such as yeast, bacteria, sugarcane, and olive oil. These non-animal adjuvant sources are more expensive and take longer to produce, but the future of our oceans may depend on such alternative methods that do not rely on “the overexploitation of a key component of the marine environment.”